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IEEM FFT—A Fast and Efficient Tool for
Rigorous Computations of Propagation

Constants and Field Distributions in
Dielectric Guides with Arbitrary

Cross-Section and Permittivity Profiles
Michal P. Mrozowski

Abstract —An etTicient approach to the analysis of dielectric guides is
presented. The technique described is based on a recently proposed
iterative scheme [5], [6] known as the iterative eigenfunction expansion
method (IEEM), which was designed specifically to allow the rigorous
analysis of dielectric guides of arbitrary cross section and permittivity
profile. In the approach presented herein, which we shall call the IEEM
FFT, the bottleneck of the IEEM is removed by the application of the
FIT to the calculation of the inner product. As a result, a reduction in
the computer storage and an increase in speed are achieved. In some
aspects the method seems to be superior to certain full-wave approaches,
including the finite difference and finite element methods. It is believed
that the method can be used for investigating guides used in millimeter-
wave techniques, optical fibers with arbitra~ cross section and refrac-
tive iudex profiles, and nonlinear effects in electromagnetic wave propa-
gation.

1. INTRODUCTION

D IELECTRIC waveguides are of paramount importance
in constructing millimeter-wave and integrated optics

devices. As new manufacturing technologies develop, the
range of options increases and the problem of characterizing
new structures arises. For certain specific guide geometries
there exists a choice of efficient methods which provide both
the propagation constant and the field distribution. How-
ever, when it comes to the analysis of arbitrarily shaped
dielectric guides which may be transversely inhomogeneous,
there are only a few numerical methods which are capable of
solving the wave equation effectively. These methods include
such techniques as the coupled mode, the Galerkin, the
finite element, and the finite difference [2]-[4], [8]-[9]. In
1985, in a survey paper devoted to the numerical methods
for analyzing arbitrarily shaped microwave and optical guides
[1], Saad noted that the numerical tools which existed at that
time did not meet the needs of users as new practical
waveguide possibilities emerged. One problem with such
numerical methods as the finite difference [9] and the finite
element [10] was that spurious eigenvalues occurred and
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special tests had to be used to identify these solutions. In the
seminumerical approaches, such as the coupled mode [2] and
the Galerkin [3], the computer storage requirements posed a
problem as these methods involve the construction of dense
matrices of large order. In conclusion it was pointed out that
substantial new work was required to improve the existing
options and broaden the range of available numerical tools
by creating new. competitive methods or possibly better
ones.

Since then the known methods have been improved (e.g., a
formulation free of the spurious modes has been proposed
[4], [16]-[20]) and new techniques, such as the integral do-
main method [12], have been developed. A salient feature of
all these methods is that at some stage the boundary value
problem is converted into matrix form. If n denotes the
matrix order. then matrix-oriented methods require - n 2
memory locations and give the solution after - n 3 opera-
tions. The storage and computer time can be dramatically
reduced if sparse matrix techniques can be used, but this is
at the cost of increased complexity of the numerical imple-
mentation. Unfortunately, sparse matrix techniques have
been used in practice only when the frequency was treated as
an eigenvalue [8], [9], This approach has certain drawbacks
[17] and in recent formulations of the FEM and FDM [4],
[16]-[20] the propagation constant is usually treated as an
eigenvalue and dense solvers are used.

In this paper we propose a technique which consists in an
alternative realization of the numerical algorithm of the
recently developed [5], [6] iterative eigenfunction expansion
method (IEEM). The IEEM was designed to analyze arbi-
trarily shaped, transversely inhomogeneous dielectric guides.
The IEEM is fast, does not require any matrix computation,
and provides the propagation constant and the field distribu-
tion simultaneously. In our approach we use the FFT to
compute the scalar products in the iteration loop of the
IEEM. When the IEEM is combined with the FFT, an
increase in speed and a decrease in computer storage are
achieved, resulting in an algorithm inheriting the virtues of
the IEEM and requiring O(n logz n) operations and O(n)
computer locations, with n denoting the number of variables
used in the approximation of the unknown fields.
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Fig. 1. Cross section of the dielectric guide under investigation. The
screening walls may be real or imaginary for open guides or symmetrical
structures.

II. ANALYSIS

We shall investigate uniform dielectric isotropic guides of
arbitrary cross section and arbitrary variation of the permit-
tivity in both transverse directions (Fig. 1). For the sake of
analysis, we assume that the guide is bounded by screening
walls which may be located sufficiently far away from the
guide. The boundary conditions at the screening walls are
assumed to be homogeneous Dirichlet and/or Neumann
ones. For reasons which will be apparent later, we assume
that the region Q bounded by the screening walls is rectan-
gular. The relative permittivity of the medium within the
bounded region is given by a scalar function 6(x, Y) (possibly
complex) of both transverse coordinates.

The electromagnetic wave propagation in the z direction
in such a structure is governed by the following boundary
value problem (the field dependence is assumed to be of the
form #~~-&)):

.(:,y)[vt’(x7Y) x(vtxRr)]v:iit+k&(x, y)iit+—

- ~2i7°= O (la)

B@t = O on Jf2 (lb)

where ~t, ko, and ~ are the transverse magnetic filed, the
wavenumber in the free space, and an unknown propagation
constant, respectively. B denotes a boundan condition oper-
ator. The Ht formulation was chosen since the magnetic
field is continuous across the interfaces between nonmag-
netic materials.

In general, an analytic solution to the above equation
cannot be found and one has to resort to numerical methods.
In this paper we shall apply for this purpose the IEEM. This
method was developed in 1986 by Jablofiski [5], [10] and used
for the investigation of multicore optical fibers [6].

111. THE IEEM

The IEEM can be presented as follows: Suppose that we
have to solve the eigenproblem

TU– AU=O (2)

where u and A denote the unknown eigenfunction and
eigenvalue of operator T, respectively. Roughly speaking, the
above problem can be solved wit-h the IEEM when it is
possible to decompose the operator T so that T = L – F,
where L has to be a self-adjoint operator of a known set of
eigenvalues {A,} and eigenfunctions {~,}. The operator F
describes the perturbation (not necessarily small) and should

be relatively compact with respect to L. The iteration loop of
the IEEM is then

A) Initial approximation of UO,AO(F’uO# O and AO# A,).
Step k
B) Expansion of the kth approximation of u into series of

eigenfunctions fi:
;(k)= ~c:k)fr (3)

The expansion coefficients are given by

~(k) = (Fu(k-’)>fi)
c Ai_ A(k-1)

with (., c) denoting inner product.
C) Normalization of u(k):

where

(4)

(5)

(6)

D) Determination of the k th approximation of the eigen-
value A:

*(@( Fu(k), f,). (7)@ = ~A,ldfk)]2 – ~di

1 1

Steps B, C, and D are repeated iteratively until

A(k)– A(k- 1)
< E~

A(k) (8a)

and/or

where e~ and e,, are understood as convergence thresholds.
In order to sol~e the boundary value problem (1) we put

A = ~2 and u = Hf = [Hx, Hyl and decompose the differen-
tial operator into

L= V:+k:

F= –(~(x, y)–l)k; – -&[v,.(x, y)x(vf x.)],

(9)

For the assumed homogeneous Dirichlet and/or Neumann
boundary conditions, the operator L is self-adjoint, More-
over, it was shown in [10] that F is relatively compact with
respect to L.

IV. THE IEEM FFT

The critical point in the IEEM is the calculation of the
inner products appearing in (3). Until now the integrals
involved have been computed either numerically [6] or ana-
lytically [7]. Integration has to be performed over the dielec-
tric core; hence the analytical integration is possible only for
certain core shapes. Numerical integration involves repeated
calculation of transcendental functions, so unless the values
of transcendental functions are stored in lookup tables, the
evaluation of the inner product is very time consuming,
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When the operator L is defined on a rectangle, the calcula-
tion of integrals and lookup tables for transcendental func-
tions can be avoided altogether. In this case the set of
eigenfunctions consists of sine and cosine functions. Conse-
quently the coefficients Ci are obtained simply from the
Fourier coefficients of the function Fu. The fastest way to
compute these coefficients regardless of the dielectric core
shape and the permittivity profile is to apply the 2-D FFT. In
order to use the FFT we have to know Fu in the spatial
domain. This means that we have to move back and forth
between the Fourier and spatial domains, first taking the
2-D inverse FFT to get u from the coefficients d, known
from a previous step, calculating Fu, and then going back to
the Fourier domain to get the coefficients c,. More specifi-
cally, each step requires two inverse 2-D FFT’s and two
forward 2-D FFT’s. Note that the operator F involves the
derivation with respect to transverse coordinates. Since the
inverse FFT gives the values of fields at discrete points, the
derivatives can readily be found using a central difference
scheme. (The derivatives, can alternatively be computed in
the Fourier domain and then calculated in the spatial do-
main by means of the inverse FFT. The numerical cost of
this approach is slightly higher than in the case of central
difference computations.)

Having presented the main idea underlying the IEEM
FFT, we shall now discuss the algorithm in detail. Let us
denote the eigenfunctions of L = 82/8x2+ 82/dy2 + k; by
h;, and h) and the corresponding eigenvalues by A’Xand A’Y
(h; = h; and A: = A’Ywhen we assume identical boundary
conditions for both field components, which is a sensible
assumption when open structures are to be modeled).

The iteration steps are as follows.

B.1)

B.2)

B.3)

B.4)

Using Fourier coefficient~ computed in the previous,
(k – l)th step, evaluate H, in the spatial domain:

H(k-1) = ~c;h;
x 2-D inverse FFT

z

B.5) Compute expansion coefficients c; and c;:

C) Normalize the expansion coefficients:

c; i

d:= and d; =
CY

J(
x, IC;12+ Icy)

J(
z, [C:12+ IC;12]

D) Determine the new, kth approximation of the propa-
gation constant f?2:

P2= ~(Aild2+ Aiyl~;12)
z

- ~ (d;*(Fxtifk), h;) + dfl(FY@k), hj)).
i

A. Operation Count

The computational cost of one iteration depends on the
length of the FFT, the number of eigenfunctions K1 and K2
used for the expansion of the HX and Hy, and the number of
discretization points M within the cross section of the guide
core (Fu does not vanish only in the region for which
E(X, y) – 1 # O). The length of the FFT in each direction
determines the discretization step. The computational cost of
an FFT of length N is of the order N log2 N (or less if the
Winograd algorithm [13] is used). Let us denote by NX and
Ny the numbers of Fourier samples in the x and y directions
and assume that K1 = K2 = K = KXKY, Suppose that M =
M, MY; then the computational cost of each iteration is

Steps B.1 and B.4 4(KXNY log2NV + MYN. logzN.)

Steps B.2 and B.3 6M

Steps B.5, C and D 12K.

In total, one iteration requires of order 4(KXNY log2 NY +

&fyNX logz NX) + 6&f + 12K multiplications.
H;k-O = ~cyz~ 2-D inverse FFT,

B. Memory Requirements

Compute Vt x ~t, i.e., 8/8yH~k-1) and 8/8xH$k-1)
(central differences).
Usi~g data obtaQed in B.1 and B.2, compute
FXH$k- 1) and FYHjk- 1),where

FX=–[(~(x, y)–l)kj]X

-*;(E(X,Y)-l)[ -;(.) ;;(.)]

FY=–[(~(x, y)–l)k~]y

[ 1-*:(. (X, Y)-l) ;(. );-;(.) .

Compute the inner products ( FX~{k- 1), h;) and
(F, fi$k - 1),hj) (2-D forward FFT).

An important point to note is that the IEEM FFT is
extremely efficient in terms of computer storage. In contrast
to other full-wave methods for analyzing dielectric guides,
the boundary value problem is not converted in the IEEM to
an equivalent matrix problem (e.g. by means of the Galerkin
procedure). Consequently the IEEM requires far less com-
puter storage than matrix-oriented methods. In the IEEM
FFT, a further reduction in terms of memory can be ob-
tained in that no lookup tables with the values of transcen-
dental functions need to be stored. For instance, if K basis
functions for each field component are used and the dis-
cretization step is chosen so that M points lie within the
core, the IEEM FFT requires typically only 2 K + 5M mem-
ory locations.

The memory requirements can be further reduced if the
permittivity profile and its derivatives are not stored but
rather are computed at each iteration. In this case the
computational cost increases slightly but the method can be
implemented using only 2(K + M) memory locations. When
K = KXKY < M < MXMY the IEEM FFT can be imple-
mented using 2 K + 2 max (Mx KY, My KX) elements.
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Let conclude this section with a brief discussion of the
price which is paid in introducing the FFT to the IEEM.
First of all we lose the freedom of choice of the basis
functions. As a result we will sometimes, e.g. in case of
guides with circular symmetry, have to use more functions
than for an optimally selected basis. Moreover, we restrict a
class of solvable problems to structures which are bounded
by a rectangle. Finally, we have to use a uniform discretiza-
tion. In return, we obtain a cost reduction in both memory
and time.

V. IEEM-FFT VERSUS MATRIX-ORIENTED METHODS

Let us first consider the memory requirements of the
matrix-oriented methods. We shall restrict ourselves to two
groups of methods. The first includes the coupled mode
(CMM) and Galerkin (GM) methods, while the second com-
prises finite difference (FD) and finite element (FE) meth-
ods. In the first group the solution is constructed using basis
functions similar to those in the IEEM FFT but the wave
equation is converted into a matrix eigenvalue problem with
a dense, nonsymmetric characteristic matrix. When K basis
functions for each field component are used, the characteris-
tic matrix is of order 2 K. Hence, the methods of the first
group require at least 4K 2 memory locations compared with
the minimum of 2K + 2 max (MXKY, MYKX) in the IEEM
FFT.

In the methods belonging to the second group, the matrix
dimensions depend on the mesh size. To compare these
methods with the IEEM FFT, suppose that the grid has
NXx NY points and NX= NY= n. The FD method gener-
ates matrices of order 2(NY – 1)2 [9]. Depending on the
formulation, the matrices are symmetric banded [9] or non-
symmetric banded [4], with the bandwidth of order 2NY.
However, despite matrices being sparse, the numerical pro-
cedures used for solving the eigenproblems, contained in
EISPACK [11], require a lot of work space. For instance
procedures used by Schweig and Bridges work with at least
- 8( N’, – 1)2(NX +1) -t NX elements. In the formulation
which is free from spurious modes and leads to a nonsym-
metric banded matrix, the QR procedures from EISPACK
[11] recommended by Bierwirth et al, [4] do not take any
advantage of the sparsity of the characteristic matrix and
consequently require at least 8(NX – 1)4 + 6(~r – 1)2 storage
locations which for NX= 15 results in a 4 Mb program [16]!
This value is in sharp contrast to the minimum of 2K +
2max(MxKy, M,KX), K < NXNY, required by the IEEM FFT.

As for the FE method two approaches have to be consid-
ered because drastically different memory requirements are
obtained depending on whether the frequency or the propa-
gation constant is treated as an eigenvalue. If frequency is an
eigenvalue, the FEM results in a generalized eigenvalue
problem with two symmetric (or Hermitian) sparse banded
matrices. The smallest eigenvalues correspond to the lowest
order modes. For definite problems there are sparse solvers
computing a few largest (smallest) eigenvalues. For a given
region division, the number of nonzero elements depends on
the formulation used and the order of shape functions. Let
us assume that the number of nodal points is NX2and the
size of matrices involved is of order iVK2(it may be higher,
e.g. from 3NX2 to 6NX2 [20]). The number of nonzero ele-
ments is then WNX2, where W is the bandwidth. As in the

4-- I

Fig. 2. Structures for which the test results obtained with the IEEM
FET are compared with data available from the literature.

simplest case of scalar field formulation and first-degree
polynomials, the bandwidth is 7 and increases if higher order
shape functions and/or vector fields are used; we may as-
sume that the memory requirements for storing the matrices
alone exceed 7NK2.In practice this value is certainly higher
since vector field formulations are used and additional work
space has to be provided for numerical procedures. The
approach with frequency as an eigenvalue has certain limita-
tions as the computations for complex propagation constant
and frequency dispersive media are difficult. Note that /3
may be complex even in lossless isotropic guides (complex
waves). Therefore in recent formulations of the FEM
[17]-[20] /3 is usually treated as an eigenvalue. This approach
results either in an indefinite and singular symmetric gener-
alized eigenvalue problem or in a nonsymmetric standard
eigenvalue problem. Some of the formulations give sparse
matrices [19]; some do not [17], [18]. To the best of the
author’s knowledge, well-known software libraries do not
contain sparse routines which would handle an indefinite
and singular symmetric generalized eigenvalue problem or a
nonsymmetric standard eigenvalue problem. Therefore, in
practice the FEM is implemented using dense solvers
[17]-[201. The size of the matrices involved ranges from
around 2N,2 [191 to around 6NX2 [17]. This means that the
memory requirements for implementing the QR algorithm
vary from 8 N; + 61Vt2to 72 NX4+ 18N,z with a program size
of around 27 Mb (!) for 153 nodal points [18].

We shall conclude this section with a brief discussion of
the numerical cost of matrix-oriented methods. We shall
consider only the cost of numerical methods used to solve
the matrix problem. In most cases, especially when the
matrix is dense, the numerical cost of such methods is of
order n3, with n being the matrix order. This gives - 8K3
for methods belonging to the first group (CMM and GM),
- 8(NX – 1)6 for the FD scheme, [4], [16] and from - 8~~ to
- 216iV~ for the FEM employing dense matrix solvers
[17]-[20]. For sparse matrices arising in the FEM and FDM
formulations in which the frequency is treated as an eigen-
value, this figure is obviously much lower but its actual value
depends on the sparsity and the algorithm used. For in-
stance, with the QL iterative algorithm for a tridiagonal
symmetric matrix, which is a prototype of all sparse matrices,
the work load for computing one eigenvalue is of order
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TABLE I
NORMALIZED PROPAGATION CONSTANT ~/ kO

Mode TE~O Mode TE;O

Slab Width TRM IEEM FFT Error TRM IEEM FFT Error

Q 0.87952 0.87952 0 0.30698 0.30698 0
1 mm 0.97173 0.97221 + 4.9.10-4 0.30877 0.30880 +6.10-5
4 mm 1.23534 1.23528 -4.8 .10-5 0.41570 0.41563 –1.7.10-4

12 mm 1.48695 1.48692 –2.10-5 1.10580 1.10565 –1.3.10-4
20 mm 1.52751 1.52751 0. 1.28574 1.28574 0.
21 mm 1.52760 1.52760 0. 1.28617 1.28617 0.

Slab guide (Fig. 2(a)), c,= 2.56, a =21 mm, ~ = 15.0 GHz.

TABLE II
NORMALIZED PROPAGATION CONSTANT P/k.

Mode E{l Mode E$l

CMM [2] IEEM FFT Error CMM [2] IEEM FFT Error

1.529 1.534 +3.210-3 1.459 1.460 +6.2.10-4

Image guide (Fig. 2(b)) .,= 2.5, kOc = 5, a/c= 5, b/c = 2.5.

- 20rr per iteration [13]. The computation of eigenvectors,
which is often needed for testing spurious modes and field
computations, increases both numerical cost and the mem-
ory.

VI. VALIDATION OF THE IEEM FFT

The performance of the IEEM FFT can be improved by a
suitable choice of the FFT algorithm. We chose the proce-
dures from Swarztrauber’s public domain FFTPACK library,
which may be obtained via electronic mail [14]. This library
uses the Winograd algorithm, which gives the user greater
flexibility in the choic~ of the FFT length and can be up to
two times faster than a classical base-2 Cooley–Tukey algo-
rithm [13].

Numerous tests have been carried out in order to verify
the IEEM FFT. First of all, it was verified that the solution
obtained with the method is identical to the Galerkin solu-
tion of (la) using the same set of basis functions. Fig. 2
shows structures for which the test results will be presented.
All examples discussed were computed on 640 KB personal
computer using a single FORTRAN program. The size of
the program, which can handle around M = 104 discretiza-
tion points within the guide core region and around K = 104
basis functions, was arqund 500 KB. In all examples the
convergence thresholds were CA= 10 – 5 and eU= 10”. The
field distribution of the fundamental mode in a homoge-
neous guide was chosen as a starting point for the iteration,
but it was verified that convergence is also obtained from
other initial solutions. Convergence was obtained typically
after six to ten iterations. First the propagation constants of
TEX modes in a rectangular waveguide loaded with a dielec-
tric slab (Fig. 2(a)) were computed.

The results are compared in Table I with the values
obtained from the transverse resonance method (TRM). For
convenience the relative error is also given. The agreement is
excellent and for homogeneous or almost homogeneous
guides the results are exact. Table II compares the IEEM
FFT with the coupled mode method used by Ogusu to
investigate a dielectric image guide [2] (Fig. 2(b)). In both

TABLE III
MEASURED ANDCALCULATEDFREQUENCIESIN GHz

Mode Measured [3] IEEM FFT Error GM [3]

quasi TEIO 1.263 1.269 +4.8.10-3 1.267
quasi TE20 1.672 1.678 +3.6.10–3 1.700

Rectangular guide with semicircular rod (Fig. 2(c)).
e, = 2.495, resonator length 1= 11.1 cm, a = 20 cm

TABLE IV
NORMALIZEDPROPAGATIONCONSTANTZ

a IEEM [6], [15] IEEM FFT Error

2 0.48939 0.48948 +1.8.10-4
4 0.62536 0.62532 –6.4.10-5
6 0.67397 0.67383 –2.1.10-4
8 0.69760 0.69742 –2.4.10-4

10 0.71122 0.71098 –3.410-4

Elliptical guide, power function permittivity profile (Fig. 2(d)).
Normalized frequency V= 3, mode HE~l, e = 2.25, semiaxes ratio

2/1.

methods the same number of basis functions, 2 X 49, was
used. The relative error does not exceed 0.4Y0. Table III
shows a comparison of the results of calculations with nu-
merical and experimental data given by Baier [3], who used a
direct Galerkin method to solve the Et field wave equation.
The structure under investigation was a resonator consisting
of a section of a rectangular guide comprising a semicircular
dielectric rod (Fig. 2(c)). The measurement error was esti-
mated to be 1qo. The results of the IEEM FFT lie well
within the measurement error margin and for the quasi-TE20
mode are far more accurate than Baier’s computations,
Finally a comparison was made between the IEEM FFT and
the original version of the IEEM (Table IV). Note that the
IEEM as formulated in [6] uses a different basis than the
IEEM FFT. While in the IEEM the fields are approximated
by series of Bessel functions, the IEEM FFT uses trigono-
metric expansion. Also, the way the inner products are
computed is entirely different. Computations were carried
out for an inhomogeneous elliptical guide with semiaxes
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TABLE V
SPEED AND CONVERGENCE OF IEEM FFT

N. K. M, z Iterations Time/Itr [s]

ACKNOWLEDGMENTr

The author wishes to thank T. Jablofiski of the Polish
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16 4 3
16 8 3
16 16 3
32 4 5
32 8 5
32 16 5
32 32 5
64 48
64 8 8
64 16 ‘8
64 32 8
64 64 8
128 4 14
128 8 14
128 16 14
128 32 14
128 64 14
256 4 27
256 8 27
256 16 27
256 32 27
256 64 27

0.1375
0.2641
0.3126
0.1224
0.2392
0.2830
0.2842
0.1273
0.2525
0.29136
0.2925
0.2925
0.1279
0.2536
0.2912
0.2925
0.2925
0.1276
0.2524
0.2898
0.29115
0.29115

5
7

10
5
7
9
8
5
7
9
8
8
5
7
9
8
8
5
7
9
8
8

(J,Z2
0.243
0.285

0.286
0.292
0.385
0.625
0.374
0.376
0.526
0.852
1.531
0.67
0.768
1.
1.56
2.67
1.9
2.04
2.454
3.43
5.38

Cylindrical guide, power function permittivity profile (a = 2), mode
HE~l.

e = 2.25, V= 3, IVl= NY, M. = MY, K. = KY, screen at 10aX.

ratio aX /aY = 2/1 and the permittivity given by the function

c,(x, y) =e{l–[(x/aX)2+ (y/aY)2]a’2}. (10)

An open structure was modeled by taking the screening walls
sufficiently far away from the guide, The results in the table
are computed for the nondimensional normalized parame-
ters Z and V, where

For all values of a the agreement is excellent.
The last table (Table V) shows the convergence and speed

of the IEEM FFT for an open cylindrical inhomogeneous
guide with the permittivity given by (9) with a = 2 and
aX\a Y=l. The screening walls were placed at a distance
10aX from the center. The CPU time given in the last
column is for an Intel 80386 (25 MHz) based PC with a
Weitek numerical coprocessor. It was calculated by dividing
the total run time by the number of iterations; hence figures
are influenced by the time of relatively slow (8 MHz) i/o
operations.

VII. CONCLUSIONS

An efficient approach to the analysis of dielectric guides is
presented. The technique, called the IEEM FFT, combines a
recently proposed iterative scheme (IEEM) with the FFT,
resulting in an efficient algorithm requiring O(n log z n) op-
erations and O(n) computer locations, with n denoting the
number of variables used in approximating the unknown
fields. In terms of computer storage and speed, the method
seems to be superior to most known full-wave approaches,
including recent formulations of the finite difference and
finite element methods which use dense matrix solvers.
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